Coverage report: /home/ellis/comp/ext/ironclad/src/math.lisp
Kind | Covered | All | % |
expression | 0 | 675 | 0.0 |
branch | 0 | 122 | 0.0 |
Key
Not instrumented
Conditionalized out
Executed
Not executed
Both branches taken
One branch taken
Neither branch taken
5
"Extended Euclidean algorithm, aka extended greatest common
7
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
14
(u_c 1 (- u_d (* q u_c)))
15
(v_c 0 (- v_d (* q v_c)))
20
(setq q (floor d c))))
22
;;; Some number theory functions taken from Maxima
24
(declare (integer a b) (optimize (speed 3)))
26
(if (= 1 (abs a)) 1 0))
27
((and (evenp a) (evenp b))
31
(tab2 (make-array 8 :element-type '(integer -1 1)
32
:initial-contents #(0 1 0 -1 0 -1 0 1))))
33
(declare (type (integer -1 1) k))
34
(loop for v fixnum = 0 then (1+ v) ;remove 2's from b
35
while (evenp b) do (setf b (ash b -1))
36
finally (when (oddp v)
37
(setf k (aref tab2 (logand a 7))))) ; (-1)^(a^2-1)/8
44
(return-from jacobi (if (> b 1) 0 k)))
45
(loop for v fixnum = 0 then (1+ v)
46
while (evenp a) do (setf a (ash a -1))
47
finally (when (oddp v)
48
(when (minusp (aref tab2 (logand b 7))); (-1)^(b^2-1)/8
50
(when (plusp (logand a b 2)) ;compute (-1)^(a-1)(b-1)/4
56
(defun power-mod-tab (b k m)
57
(declare (optimize (speed 3) (safety 0)))
58
(let* ((l (ash 1 (1- k)))
59
(tab (make-array l :element-type 'integer :initial-element 1))
62
(setf (svref tab 0) b)
65
(setq bi (mod (* bi bb) m))
66
(setf (svref tab i) bi))))
68
(defun power-mod (b e m)
69
(declare (optimize (speed 3) (safety 0)))
76
(setq res (mod (* res b) m))
77
(when (= 1 e) (return res)))
80
(t ;; sliding window variant:
81
(let* ((l (integer-length e))
87
(tab (power-mod-tab b k m))
93
(setq s (max (1+ (- i k)) 0))
94
(do () ((logbitp s e)) (incf s))
95
(setq tmp (1+ (- i s)))
96
(dotimes (h tmp) (setq res (mod (* res res) m)))
97
(setq u (ldb (byte tmp s) e))
98
(unless (= u 0) (setq res (mod (* res (svref tab (ash u -1))) m)))
101
(setq res (mod (* res res) m))
104
(defun miller-rabin-decomposition (n) ;; assume n > 2 (n-1 is even)
105
;; return values q,k with n-1 = q*2^k
106
(declare (optimize (speed 3) (safety 0)))
108
(q (ash n -1) (ash q -1)))
109
((logbitp 0 q) (values q k))))
111
(defun miller-rabin-kernel (n q k &optional x)
112
;; now assume n-1 = q*2^k, k >= 1
113
(declare (optimize (speed 3) (safety 0)))
115
(setq x (+ (strong-random (- n 2)) 2)))
116
(let ((y (power-mod x q n)) ;; j = 0
118
(if (or (= y 1) (= y minus1))
122
(setq y (power-mod y 2 n))
123
(when (= y minus1) (return t))
124
(when (= y 1) (return)))))) ;; n prime => last y must have been 1 or -1
126
(defun lucas-sequence (k p n)
127
(declare (optimize (speed 3) (safety 0)))
128
(let ((uh 1) (vl 2) (vh p) (s 0) l)
133
(setq l (integer-length k))
134
(do ((j (1- l) (1- j)))
138
(setq uh (mod (* uh vh) n))
139
(setq vl (mod (- (* vh vl) p) n))
140
(setq vh (mod (- (* vh vh) 2) n)))
142
(setq uh (mod (1- (* uh vl)) n))
143
(setq vh (mod (- (* vh vl) p) n))
144
(setq vl (mod (- (* vl vl) 2) n)))))
145
(setq uh (mod (1- (* uh vl)) n))
146
(setq vl (mod (- (* vh vl) p) n))
148
(setq uh (mod (* uh vl) n))
149
(setq vl (mod (- (* vl vl) 2) n)))
152
(defun primep-lucas (n)
153
(declare (optimize (speed 3) (safety 0)))
155
(loop until (= (jacobi (- (* b b) 4) n) -1) do
157
(zerop (lucas-sequence (1+ n) b n))))
159
;;; modular arithmetic utilities
160
(defun modular-inverse (n modulus)
161
"Returns M such that N * M mod MODULUS = 1"
162
(declare (type (integer 1 *) modulus))
163
(declare (type (integer 0 *) n))
164
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0)))
165
(when (or (zerop n) (and (evenp n) (evenp modulus)))
166
(return-from modular-inverse 0))
168
with r1 of-type integer = n
169
and r2 of-type integer = modulus
170
and u1 of-type integer = 1
171
and u2 of-type integer = 0
172
and q of-type integer = 0
173
and r of-type integer = 0
176
(multiple-value-setq (q r) (floor r1 r2))
181
finally (return (let ((inverse u1))
182
(when (minusp inverse)
183
(setf inverse (mod inverse modulus)))
184
(if (zerop (mod (* n inverse) modulus))
188
(defun modular-inverse-with-blinding (n modulus)
189
"As modular-inverse, but mask N with a blinding factor before
190
computing the modular inverse."
191
(declare (type (integer 1 *) modulus))
192
(declare (type (integer 0 *) n))
193
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0)))
194
(let* ((b (loop for b = (+ 1 (strong-random (- modulus 1)))
195
until (= 1 (gcd b modulus))
197
(x (mod (* n b) modulus))
198
(y (modular-inverse x modulus)))
199
(mod (* y b) modulus)))
201
(defun expt-mod (n exponent modulus)
202
"As (mod (expt n exponent) modulus), but more efficient (Montgomery ladder)."
203
(declare (optimize (speed 3) (safety 0) (space 0) (debug 0))
204
(type integer n exponent modulus))
205
(assert (<= 0 exponent modulus))
206
(assert (> modulus 1))
209
(i (1- (integer-length modulus)) (1- i)))
211
(declare (type fixnum i)
212
(type integer r0 r1))
213
(if (logbitp i exponent)
214
(setf r0 (mod (* r0 r1) modulus)
215
r1 (mod (* r1 r1) modulus))
216
(setf r1 (mod (* r0 r1) modulus)
217
r0 (mod (* r0 r0) modulus)))))
219
(defun expt-mod/unsafe (n exponent modulus)
220
"As (mod (expt n exponent) modulus), but more efficient. This function is
221
faster than expt-mod, but it is not safe against side channel timing attacks."
222
(power-mod n exponent modulus))
224
;;; prime numbers utilities
225
(defconst +small-primes+
227
:element-type 'fixnum
228
:initial-contents '(2 3 5 7 11 13 17 19 23 29 31 37 41 43
229
47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131
230
137 139 149 151 157 163 167 173 179 181 191 193 197 199 211
231
223 227 229 233 239 241 251 257 263 269 271 277 281 283 293
232
307 311 313 317 331 337 347 349 353 359 367 373 379 383 389
233
397 401 409 419 421 431 433 439 443 449 457 461 463 467 479
234
487 491 499 503 509 521 523 541 547 557 563 569 571 577 587
235
593 599 601 607 613 617 619 631 641 643 647 653 659 661 673
236
677 683 691 701 709 719 727 733 739 743 751 757 761 769 773
237
787 797 809 811 821 823 827 829 839 853 857 859 863 877 881
238
883 887 907 911 919 929 937 941 947 953 967 971 977 983 991
239
997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063
240
1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153
241
1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237
242
1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319
243
1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433
244
1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499
245
1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597
246
1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669
247
1693 1697 1699 1709 1721 1723)))
248
(defconstant +last-small-prime+ 1723)
250
(defun generate-small-primes (n)
251
"Generates a list of all primes up to N using the Sieve of
252
Eratosthenes. Was used to generate the list above; included for
253
mathematical interest."
254
(assert (<= 2 n (expt 2 20)))
255
(loop for i from 2 to n
256
with array = (make-array (1+ n) :initial-element 1)
257
unless (zerop (aref array i))
258
do (loop for j from 2 to (floor (/ n i))
259
do (setf (aref array (* i j)) 0))
260
finally (return (loop for j from 2 to n
261
unless (zerop (aref array j))
264
(defparameter *number-of-miller-rabin-tests* 64)
266
(defun prime-p (n &optional (prng *prng*))
267
"True if N is a prime number (with very high probability; at most 1:2^128
268
chance of returning true for a composite number with the default
269
*NUMBER-OF-MILLER-RABIN-TESTS* of 64)."
270
(declare (type integer n)
271
(optimize (speed 3)))
272
(if (<= n +last-small-prime+)
273
(when (find n +small-primes+) t)
275
(and (loop for p across +small-primes+
276
never (zerop (mod n p)))
277
(multiple-value-bind (q k) (miller-rabin-decomposition n)
278
(loop repeat *number-of-miller-rabin-tests*
279
always (miller-rabin-kernel n q k)))
282
(defun generate-prime-in-range (lower-limit upper-limit &optional (prng *prng*))
283
(assert (< 0 lower-limit upper-limit))
284
(loop for r = (strong-random (- upper-limit lower-limit -1) prng)
285
for x = (+ r lower-limit)
286
until (prime-p x prng)
289
(defun generate-prime (num-bits &optional (prng *prng*))
290
"Return a NUM-BITS-bit prime number with very high
291
probability (1:2^128 chance of returning a composite number)."
292
(loop with big = (ash 1 (1- num-bits))
293
for x = (logior (strong-random big prng) big 1)
294
until (prime-p x prng)
297
(defun generate-safe-prime (num-bits &optional (prng *prng*))
298
"Generate a NUM-BITS-bit prime number p so that (p-1)/2 is prime too."
300
for q = (generate-prime (1- num-bits) prng)
302
until (prime-p p prng)
305
(defun find-generator (p &optional (prng *prng*))
306
"Find a random generator of the multiplicative group (Z/pZ)*
307
where p is a safe prime number."
310
with factors = (list 2 (/ (1- p) 2))
311
for g = (strong-random p prng)
314
never (= 1 (expt-mod/unsafe g (/ (1- p) d) p)))
317
(defun find-subgroup-generator (p q &optional (prng *prng*))
318
"Find a random generator of a subgroup of order Q of the multiplicative
319
group (Z/pZ)* where p is a prime number."
320
(let ((f (/ (1- p) q)))
321
(assert (integerp f))
323
for h = (+ 2 (strong-random (- p 3) prng))
324
for g = (expt-mod/unsafe h f p)
326
finally (return g))))